Home > Publications > One-dimensional magnetotelluric inversion with radiation boundary conditions

One-dimensional magnetotelluric inversion with radiation boundary conditions

Abstract:

We present an algebraic method of solving the magnetotelluric inverse problem for the case of one-dimensional conductivity profiles in the class D+. We show that the typically examined Dirichlet boundary conditions are a limiting case of the radiative boundary conditions introduced by Srnka and Crutchfield. By examining the analogous inverse inhomoge-neous string problem studied by Kre ̆ın we demonstrate the usefulness of the conductivity class D+. Results of the inversion procedure are pre- sented, as well as a discussion of the continued fraction expansions re-sulting from the more general boundary conditions. The presentation presupposes no knowledge of magnetotellurics.

Authors: Tyler Helmuth, Raymond Spiteri, Jacek Szmigielski

Download: HelmuthSpiteriSzmgielski2008