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Mathematical models for the electrical activity in cardieglls are normally formulated as systems of ordinary
differential equations (ODEs). The equations are nonfirseal describe processes occurring on a wide range of
time scales. Under normal accuracy requirements, this sntilee systems stiff and therefore challenging to solve
numerically. Because standard implicit solvers are diffituimplement, explicit solvers such as the forward Euler
method are commonly used, despite their poor efficiency.-8tandard formulations of the forward Euler method,
derived from the analytical solution of linear ODEs, canegsignificantly improved performance while maintaining
simplicity of implementation. In this paper we study thefpemance of three non-standard methods on two different
cell models with comparable complexity but very differetiffisess characteristics.

Keywords:cardiac cell models, non-standard finite difference methadmerical methods for initial-value
problems

1 Introduction

Since the first Purkinje cell model was introduced in 1962 lojpld et al. [1], a large
number of models have been developed for different typesdfiac cells. Impor-
tant contributions include [1, 2] describing Purkinje sell3-5] describing ventric-
ular cells, and [6, 7] describing atrial cells. The models gpically formulated as
systems of nonlinear ordinary differential equations (BRH hese models are be-
ing continually developed to give an increasingly detaded accurate description of
cellular physiology. However, this development also tetodacrease the complexity
of the models. The newer models attempt to capture processasvider range of
time scales. This range of time scales is normally a sourséféifess, and hence the
equations become more challenging to solve numericallgli&ik numerical meth-
ods are forced to take steps on the fastest time scale duatditgtrestrictions.

T Simula Research Laboratory, P.O. Box 134, N-1325 Lysakeryidy; email: mary@simula.no; email: sundnes@simula.no;
phone: +47 67 82 82 00; fax: +47 67 82 82 01

1 Department of Informatics, University of Oslo, P.O. Box D08I-0316 Oslo, Norway

§ Department of Computer Science, University of Saskatche®askatoon, Saskatchewan, S7N 5C9, Canada; emaili@piteusask.ca;
phone: (306)-966-2909; fax: (306)-966-4884



January 28, 2007 21:7 Computer Methods in Biomechanics @mdd&lical Engineering NSodes

2

These small steps then translate into inefficient simulatiand yield solutions that
are much more accurate than normal accuracy requirementisl\wecessitate.

The fact that most advanced models for cardiac cells afésstihe of the consider-
able challenges when attempting to solve these equatiticigpfly. A wide range of
solvers have been developed for stiff ODE systems, seeHager and Wanner [8],
but these are normally implicit methods that are difficulingplement in a robust
manner. When simulating the behaviour of a single cell, aesingle ODE system,
over short time intervals, the efficiency of the numericaltmoel is hardly notice-
able. Both simple explicit methods and various availalilelies of solvers for stiff
problems may be suitable solutions. However, both the p&imiency of explicit
solvers and the complexity of implicit solvers become intpotissues when the cell
models are used in simulations of heart tissue or the compleart muscle. In this
case the cell model ODEs are coupled to partial differeeiiplations (PDEs), e.g.,
the bidomain model [9, 10], that describes the variationth@electrical potentials
throughout the tissue. The bidomain model is a system of tartigh differential
equations, and the coupling of the cell model ODEs to thisehtygically makes it
more difficult to utilize standard explicit solvers or aile libraries for solving the
ODEs. Furthermore, when the PDEs of the bidomain model a@etized in space,
we typically need to solve one cell model system for each motiee computational
grid, which for simulations of a complete heart may easilgeed 10 million [11].
In this case the efficiency of the ODE solver becomes a vergitapt issue.

Because of the complexity involved in utilizing implicit @Dsolvers in simula-
tions based on the bidomain model, the simple forward Eulethod is a popular
choice among researchers in this field [12, 13]. Howeveg #hxplicit method is
known to behave poorly for stiff problems, and for some regail models, such
as the 1999 canine model by Winslow et al. [5], its poor penfamce renders it in-
feasible for use in practice, even for single cell simulasioA clever alternative to
the forward Euler method was derived in the 1970s by Rush amgdn [14]; it has
gained a wide popularity in the heart cell simulation researommunity [15-17].
The method utilizes the fact that although the cell model Gip&ems are nonlinear,
most of the ODEs are linear when some variables are assunisel¢onstant. For
these equations it is therefore possible to derive an ugdateila based on the ana-
lytical solution of linear ODEs. The remaining equationsgtia system are nonlinear
even when all other variables are assumed constant, and original method these
are treated with the forward Euler method.

Although formally only first-order accurate, the non-stardl finite-difference
(NSFD) ODE solver introduced by Rush and Larsen has proveaeta signifi-
cant improvement over the standard forward Euler methodnélical studies have
shown that for a wide range of cell models both stability andusacy properties
are substantially improved. Although the method may not$efticient or robust
as general-purpose stiff ODE solvers such as BDF methodsmlitit Runge-Kutta
methods, see e.g., [18], the method is effectively as easydlement as the forward
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Euler method, and this is probably the main reason for itaufzojty.

The efficiency of the Rush—Larsen NSFD solver for the LuoR[&d cell model
ODE system was investigated in [19]. The purpose of the pigsaper is to evalu-
ate the performance of NSFD methods for a pair of fairly réeoetl models. One is
an atrial model by Courtemanche et al. [7], and the other israricular model by
Winslow et al. [5]. These models are ODE systems consisfigd and 31 equations,
respectively, and the models are of comparable compléxawever, the characteris-
tics of the two models in terms of stiffness are very différamd we investigate how
this affects the efficiency of the NSFD solvers. The numéggperiments presented
here are for single cell simulations only, but the resulggrding computational effi-
ciency are directly transferable to the case of full-scateutations of the bidomain
model based on operator splitting [20].

The organization of this paper is as follows. Section 2 iiwes the two ODE sys-
tems considered. Section 3 describes different versiotieedSFD solvers. Section
4 describes numerical experiments with the different sshamd compares their ef-
ficiency for solving the two model systems. Finally, Secttosummarizes our work
and gives recommendations on the applicability of the wergolvers.

2 Mathematical models

2.1 Theatrial cell model

The atrial cell model of Courtemanche et al. includes 15da@rid pump currents,
including the handling of intracellular calcium by the sgpasmic reticulum (SR).

The intracellular concentrations of calcium, sodium, aathpsium are also included
in the model. The transmembrane potenfié| satisfies

dVv 1
N, — __Iiom
dt Ch

wherel,, is defined as

Iion = INa + IKI + Ito + IKur + IKr + IKS
+ ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca-

Twelve of the 15 currents included in the model are ionic enis, 7 of which are
controlled by the action of gating variables described byE3Df the form

dy Yoo — Y
_— = 1
dt Ty ’ (1)
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wherey is the gating variable in question, and the terygsandr, are defined as

Gy
Yoo ay"‘ﬁy’

1
YTy + By

with botha,, and 3, being functions of’. Complete expressions for thg, and3,
can be found in [7]. There are a total of 15 gating variablabémodel. For the fast
sodium current there are 3 gates, h, and;. Five potassium currents are included
in the model, four of which are time dependent: the trans@rntvard potassium
current, with gates,, ando;, the ultrarapid delayed rectifier potassium current, with
gatesu, andu;, the rapid delayed outward rectifier potassium current) gatez,.,
and the slow delayed outward rectifier potassium currertt) gatezs. The L-type
calcium current is controlled by three gatds,f, and f-,, and the calcium release
from the junctional sarcoplasmic reticulum (JSR) is alsotoaled by three gates,

v, andw. All 15 gates satisfy equation (1), with= m, h, j, etc.

In addition to the ODEs for the gating parameters, the Coustteche et al. model
includes ODEs for the intracellular sodium, potassium, aattium concentra-
tions (Nat];, [KT];, [Ca*];), including the calcium uptake and release by the SR
([CaQ+]up' [Ca®*]ra),

d[Na™J; _ —3INak — 3INaCa — IbNa — INa
dt FV; ’
dKT)i  2INax — Ixi — Tto — Ikur — Ie — Ixs — Ihx
at FV; ’
d[Ca2+]i o E
dt B2’
2INaCa - Ip Ca — ICaL - [b Ca
Bl= : L
2FV;
+ Vup(lup,lcak - Iup) + Irolvrol
Vi '
B2 =1+ [Trpn]mame,Trpn [Cmdn]maXKm,Cmdn
([Calz+] + Km,Trpn)2 ([Caz+]i + Km,Cmdn)Z’
d[ca2+]up Vrel
T = Iup - Iup,leak - Itr Vup’
d[Ca®t re Csan)maxKm,csqn -
[ ] 1:(Itr—Ir01){1+ [2—?] ,Csq 2} .
dt ([Ca ]rel + Km,qun)
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In total, there are 21 ODESs in the Courtemanche et al. ateilmodel. A more
complete description can be found in [7].

2.2 Theventricular cell model

We here list the ODEs of the 1999 canine model by Winslow etvel.only present
the structure of the equations; for a full specification afitocurrents and coefficient
functions we refer to the original presentation in [5].

The transmembrane potential is governed by a sum of 13 iamrewts;

dVv
E = _([Na + ICa + ICa,K + IKr + [Ks + [to + [Kl + IKp

+1INaCa + INak + Ip(Ca) + ICa,b + INa,b)-
The ionic currents, specified in [5] are in general nonlirfeactions ofV/.

Membrane currents of sodium and potassium are governed byirfggvariables,
which are described by

dm
== = (1 —m) = fm,
et (I —=m)—Bnm
dh
— = 1—h)—0Byh
dt ah( ) 5h )
dj ) .
= @l =3) =B,
dXKr o (XI%; - XKr)
dt TXk, ’
dXks _ (XI%‘; — Xks)
dt TX ke ’
dXio
dtt = osz(l - Xto) - 5Xthoa
dYio
dtt = a)/to(]' - KO) - /BKOKO'

All coefficients are functions of the transmembrane pognfionly.
A characteristic of this model is its advanced handling d€ican dynamics. This
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includes the following system to describe release of caidiom the SR.

P,
ddtcl — _kHCa2HA P + ko Po.,
dFP,
- =kl [Ca> L Pe, — Ky Po,, —kf [Ca*" 4 Po,
—|—]€b_P02_k2_P01+kc_P027
dP, -
dt02 = klj_ [Ca2+]§spol - kb PO?’
dFPe _
2 = kFPo, — k. Po,.
dt c 40 c 1 Cy

All the k-coefficients are given constants.
The following system describes the membrane current ofwalthrough the so-
called L-type channels.

dC
d—to = BC1 + wCcap — (4a +7)Co,
dC
d_tl = 4aCy + 23C, + %CCal — (B + 3a +~a)Ch,
dC w
= = 3001 +36Cs + 15Cca — (26 + 20 +7a%)Cy,
dC w
d—tg =2aCs + 46Cy + ﬁC'ca?, — (3 + a+7d”)Cs,
dC4
—— = aC+ g0 + 3Ccu — (48 + f +~a")Cu,
dO
a fCy — g0,
dCdCtJaO = ('Ccar +7Co — (40’ + w)Coap,
dCca
Coa _ ad/ Ceag + 26'Caz +vaCy — (5, +3a’ + f) Ccat,
dt b
dCca w
d(tj 2 = 30/Ccar + 30'Ceas +7a2Ca — <2ﬁ, + 20/ + b_2) Caz,
dCca o
—dctj 3 = 2C¥/CCa2 + 45/CCa4 + 7&303 - (35/ + a/ T b_3> CCa?n
dCcas 4 ryop Y
T _QCCag + va 04 — <4ﬁ +f + b_4) CCa47
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%:yoo_y
dt Ty

The coefficientsy, 3, o/, andg’ are functions of the transmembrane poteritialhe
parametery, describing the transition from state normal to s@@tg is a function of
the subspac€a’* concentratioriCa®*|,,. The gating variables of the closing vari-
abley are functions o/, and the rest of the coefficients are constants. A detailed de
scription of the channel is given in [21]. Intracellular cialm buffering is described

by
CUH%ENCE*] — kfr,[Ca?*]; ((HTRPN] o, — [HTRPNCa))
iy [HTRPNCal,
w — ki, [Ca2 i ([LTRPN] o — [LTRPNCal])
_ k;lzrpn [LTRPNCa],

where thek-coefficients are constants.
Finally, the model describes the dynamics of five differetacellular ionic con-
centrations by the equations

+7.
d[gt ]Z — _[IKr + IKS + Ito + IK1>
AcapCisc
+Ikp + Icak — 2INaK) 2,
P Vinyo F
d[CaZJF]Z-
T = ﬁz foer - Jup - Jtrpna
AcapCsc
_(ICa,b - 2INauCa +1 Ca )L:| )

P OV g F
d[CaZ+] Visk v, AcanC.
—= = ss Jrc—_Jxorﬂ_[a S )

dt P\ g~ ey m T eagy oF
d[Ca2+]JSR
-, - Jir — Jrel)s
" Bisr (J 1)
d[ca2+]NSR —J meo —J Visr
dt P Vasr "VNsr

The ionic currents and the coefficient functiof)s 35, andSxsr are nonlinear func-
tions of their respective variables, making all these eignatnonlinear.
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As noted above, the reader is referred to [5] for a full speatfon of the system.

3 Numerical methods

The models described in the previous section can be wrigegeaeral initial-value
problems of the form

d
=T,y =y 2)
Many standard solvers for such initial-value problems cardérived from the for-
mula

tn+l

y(HY) = (1) + / f(r,y(r))dr, 3)

tn

wherey(t™) is assumed to be known. The right-hand side functfois generally
nonlinear, andy is unknown, so it is normally not possible to compute the-inte
gral exactly. Different approximations of the integral gisise to different numerical
methods. The forward and backward Euler methods are debyadewing the in-
tegrandf(¢,y) as constant, evaluated either at the left(t") or right (¢t = ¢t"*1)
endpoint of the integral, respectively. Both of these md&hare formulated in vector
form, and in principle all components of the vector functipare integrated simul-
taneously and in the same manner.

The solvers considered in this paper differ from this norstalicture in that the
components of are integrated separately, i.e., by

tn+1

Gt = (") + / fi(ry(r))dr, )

tn

and different approximation rules may be applied to theed#fit components. In
component form, all the equations in the models consideasdbe written in the
form

dyi .
E - fz(y)> (5)

wheref;(y) is component of the nonlinear vector functiofi(y). However, a signif-
icant portion of the equations can be written in the form

dyi

i A(y)yi + B(yx), (6)
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where A and B are nonlinear functions, ang is a vector of components gfthat
does not include componentFor a system ofn equationsy, is a vector of at most
lengthm — 1, containing various componenjsfor j # i. An example of equations
that can be put on this form is the gating variable equati@éhsf¢r which A and B
depend only on the transmembrane potenifiaile., in this casg, = V. We see that
in a sequential solution algorithm, where each equatioteigped forward holding
all other variables constant, (6) reduces to a linear ODE wdinstant coefficients.

The NSFD solvers are based on special treatment of the egsaif the form (6).
More precisely, the integral in (4) is approximated diffettg for these equations.
The ODEs associated with the two models considered heraenmefore divided into
two parts, one part consisting of equations that can beesrisis (6), and one part
consisting of the equations that must be kept in the fullylinear form (5). With a
slight abuse of nomenclature, we refer to the group of eqoatof the form (6) as
the linear part of the system, and the group of the form (Shasonlinear part. For
the model by Courtemanche et al., the linear part consigteofariablesn, h, j, o,
0i, Ug, Uiy Tpy T, d, [, foa, u, v, @andw, while the nonlinear part contains, [Na™];,
[K];, [Ca*t);, [Ca*T)per, and[Ca?t],,. Similarly, for the model by Winslow et al.
the variablesn, h, j, Xkr, Xks, Xto, Yio» Po,, Po,, Po,, Pc,, Co, C1, Ca, Cs,
C4, O, Cca0, Coal, Coa2, Coasy Coas, [HTRPNCal, and[LT RPN Ca] form the
linear part, and’, [K1];, [Ca®T);, [Ca*T]ss, [Ca*T]jsr, and[Ca?T]n sk form the
nonlinear part.

It will be useful to compare the performance of the NSFD s@ve that of the
forward Euler method. Forward Euler is a standard solvehendense that all com-
ponents of the integral are approximated in the same maandrthe method can
be derived from (3). However, because of its simple, expéitructure, the method
can also be derived from the component-based version (4)ledsribed above, the
integral in (4) is approximated by inserting the valuésy™ in f and treating the
integrand as constant. The linear components are steppedrtbby

yitt =y + AtA(Y" )y + B(y"), 7)
and the nonlinear components are updated from
it =yl ALY (8)
The NSFD solver derived by Rush and Larsen [14] is based or@agreatment

of the linear part of the equations. Inserting the valygg,, in the expressions for
A andB and using (4) and (6), we get

tn+1

yi(tH) = i (t") + / (Ays + B) dr. ©)

tn
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SinceA andB are treated as constant, the integral can be evaluatediaa#ify and
we obtain

B B
ntl _ (0, BY ane B

In the original formulation of the Rush—Larsen method, tijslate formula is used
for all components of the linear part of the system, and tinediod Euler method is
used for the nonlinear components.

One can suggest a variety of modifications of the originallRiLarsen method.
A possible weakness of the method is that the forward Eulghaotkis used for
the nonlinear part of the system. In the case that this pahiegystem is stiff, this
will lead to severe restrictions on the time step. An improeat of the method may
therefore be to solve some or all of these equations imigliaitth for instance the
backward Euler method. Although this discretization letmsionlinear algebraic
equations that must be solved with an iterative technigab s Newton’s method,
this processiis fairly simple because only scalar versibtisdNewton iteration must
be applied. Using the backward Euler method, (4) becomes

Yt =yl Atfi(y oy, (11)

where againy, is a vector containing componentsigtut noty; itself. This equation

is solved by Newton’s method. Combining this formula for timnlinear equations
with (10) for the linear parts, we get a first-order algorithihat is slightly more

computationally expensive than the original Rush—Larsethod, but it may have
improved stability properties and hence be ultimately nefficient. We also test a
component-wise version of backward Euler, where (11) idiagpo both the linear
and nonlinear parts of the system.

Another weakness of the Rush—Larsen method is that althdleghaccuracy
is improved compared to the forward Euler method, the oVeeduracy is still
only first order. Although this is hard to avoid for a sequahtreatment of the
equations like the one we consider here, second-orderacygunay be obtained by
performing each step as a series of two steps. First, we adeubh—Larsen method
with implicit treatment of the nonlinear part (given in (319 compute the value of

all variables at time = t,, + At/2; i.e., all components ij“/Q. These midpoint
values may then be used to compute the constants in the ugidatéf we also use
an implicit midpoint discretization of the equations in thenlinear part, we obtain
an algorithm that is second-order accurate. The two steplseolgorithm can be

summarized as follows.
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(i) Compute a midpoint-approximation of all variables gsin

nt1/2 _ (,n, BY aap B
yz - <yz + A> e A

for the linear equations and

n n At n 1 n n
i =g 5 (B2 00 + ).

for the nonlinear ones.

(i) Use the midpoint values to compute new valuesdoand B, and integrate the
linear part of the system for a full time step with (10). Thenliiwear equations
are then updated with the implicit midpoint formula,

yrtt =yl 4 At (ﬁ(yfﬂm, %(y? + y?“))) :

Because it consists of two normal steps, this step is almasttly twice as ex-
pensive as the NSFD method based on a single step of (10) atdtkward Euler
method. Numerical experiments must be performed to determvhether this extra
cost is outweighed by the increased accuracy or stabilithe@fnethod.

As an alternative second-order NSFD method, we discretigesjuations in the
nonlinear part using the following singly diagonally imgtiRunge—Kutta (SDIRK)

method,
| v O
111y v,
14 v

wherevy = 2‘2\/5. As with the backward Euler method, this SDIRK method.is
stable and has the property of stiff decay [18].

4 Numerical experiments

The cell model ODE systems are known to be stiff. In geneiraldifficult to give a
precise, quantitative definition of stiffness; see e.g1l@822] for discussions. Stiff-
ness is often better defined in qualitative terms, relatiggerformance of explicit
ODE solvers to that of implicit ODE solvers. We will say thgtrablem is stiff if the
step size required for stability of a given numerical metiwohuch smaller than the
step size dictated by accuracy requirements. This definilliostrates the important
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Cell model Amin
Beeler-Reuter -82.15
Luo-Rudy phase 1 -174
Luo-Rudy phase 2 -365
Winslow et al. -19167
Courtemanche et al. -106

Table 1. Largest negative eigenvalues occurring in somelpoplectrophysiology models for cardiac cells.

fact that stiffness is not only a property of the ODE systeut diso depends on the
requested accuracy.

Stiffness is often related to the existence of a wide rangered scales in a prob-
lem. For a linear homogeneous problem of the form

dy
dt - Ay7

the time scales of the solution are characterized by thene#dees ofA. A more
guantitative measure of stiffness can sometimes be olgt&iom the distribution of
the eigenvalues ofl. In order to have a stable solution all eigenvaluesiafnust
have negative real part, and a stiff problem can sometimeshbeacterized by the
eigenvalues being distributed over a large interval of thgative real axis.

For nonlinear problems it is even harder to give a meaningfiantitative defini-
tion of stiffness. However, (local) stiffness of these pgevhs will often be related to
the eigenvalues of the Jacobian of the right-hand side ifumgt Similar to the linear
case, a wide distribution of eigenvalues corresponds texistence of multiple time
scales, and thereby usually a stiff system. By this defimjticause the Jacobian is
not constant, a nonlinear problem may be stiff in some irtisrand non-stiff in oth-
ers. In an attempt to characterize the stiffness of vari@lisncodel ODE systems,
we have evaluated the largest negative Jacobian eigenvatuering in a typical
simulation. We have only considered the real part of therwigkies, and the results
are given in Table 1. For the Courtemanche and Winslow cetlet®) the maximum
(largest positive) and minimum (largest negative) eigkremare plotted versus time
(for the course of one action potential) in Figure 1.

We see that among these models the canine model by Winsldwsgdiads out as
having extremely stiff regions. Based on the eigenvalussabssible to estimate the
step size required for stability of various methods. Thp steeAt must be chosen so
that the complex numbeYAt is inside the absolute stability domain of the method
for all eigenvalues\. For a definition of the absolute stability domain we refer to
e.g., [8, 18]. Using the forward Euler method as an exampkestability domain of
this method is a circle in the complex plane with centef-i1,0) and radius one.
From the eigenvalues in Table 1 we see that\far to be inside this region, we must
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Figure 1. Maximum and minimum eigenvalues for the Courtecharand Winslow cell models.

haveAt ~ 0.0189 msec for the Courtemanche et al. model aftd =~ 0.000104 msec
for the model by Winslow et al. Therefore, although these et®dre comparable in
terms of physiological accuracy, they are markedly différie terms of stiffness,
resulting in much stricter step size requirements for a tamtsstep-size solution of
the model by Winslow et al.

In our experiments, we determine the largest allowable ste@ based on accu-
racy. To determine the error in a numerical solution, we cotaja reference solution,
V, generated using the Matlab sohatte15s, to serve as the exact solution. Mat-
lab’'sodel15s is a variable step size stiff solver based on a family of lmaaltistep
methods known asumerical differentiation formula@3]. The absolute and relative
tolerances were set to 1e—10 (atol=rtol=1e-10) in gemegrdkie reference solution.
To check convergence of the reference solution, it was coedpi@ solutions gen-
erated byode15s with atol=rtol=1e-11, andde45 (a Matlab solver based on the
Dormand-Prince pair) with atol=rtol=1e—10 and atol=rtbé=11; we found the solu-
tions to be identical up to 7 digits. The approximate sohsgifor the transmembrane
potentiall” obtained with the numerical methods under investigatioreveempared
to the reference solution using the following measuresiaive root-mean-square
(RRMS) error [24] given by

N v _v)2
RRMS = \/2:21(]\‘[/—‘/2‘/) (12)
=1 "1

and a measure of the global error
€global = max(|\A/ - V|) (13)

The allowable error was determined in terms of the RRMS e8pecifically, for all
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methods the step size was increased until the RRMS errorficgeded 5%. This
level of accuracy is chosen to reflect typical accuraciesired in biomedical engi-
neering applications. We note that allowable step size doesompletely determine
the efficiency of a given method because each method haseaetiffcomputational
cost per step.

Table 2 gives the results for the forward Euler method, the D &ethod using for-
ward Euler on the nonlinear components (Rush—-Larsen mgtaond the component-
wise version of backward Euler. Table 3 gives the resultgicee NSFD methods
using backward Euler, implicit midpoint, and SDIRK, resipesgly, on the nonlinear
components. In Tables 4 and 5 we verify that the NSFD methdgitisimplicit mid-
point and SDIRK solvers are indeed second order; i.eAtis halved, the (asymp-
totic) error decreases by a factor of 4. (Tita¢e of convergence is calculated kg,
of this factor.) The CPU times for all six methods are givemaile 6. Figures 2 and 3
compare the solutions for the transmembrane potentiabubia various numerical
methods discussed here with the step sixegiven in Tables 2 and 3.

Forward Euler NSFD w/FE Component-wise BE

Courtemanche A't 0.0194 0.345 0.408
RMS 0.0023 0.0497 0.0498
€global 1.9396 37.4717 46.3757

Winslow At 0.000107 0.00028 0.000125
RMS 0.000776 0.0486 0.0405
€slobal 0.0991 6.0760 5.0574

Table 2.  Maximum step sizes (in msec) for various methods.

NSFD w/BE NSFD w/ Impl Midpt NSFD w/ SDIRK

Courtemanche At 0.541 0.80 0.89
RMS 0.0499 0.0490 0.0493
€global 55.5594 26.1142 26.9269

Winslow At 0.00014 0.00028 0.00123
RMS 0.0474 0.0478 0.0497
€slobal 5.9119 5.9667 6.2596

Table 3.  Maximum step sizes (in msec) for various methods.
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Step size RRMS error Rate Global error Rate

0.0025 0.2453 29.3822

0.00125 0.0494 2.3120 6.2208 2.2398

0.000625 0.0123 2.0059 1.5483 2.0064

0.0003125 0.0032 1.9425 0.4050 1.9347
0.00015625 0.0008414 1.9272 0.1060 1.9339

Table 4. Error values for the Winslow model illustrating tttzee NSFD with the Implicit Midpoint method is second order.

Step size RRMS error Rate Global error Rate
0.001 0.0321 4.0449

0.0005 0.0081 1.9866 1.0149 1.9948
0.00025 0.0021 1.9475 0.2645 1.9400
0.000125 0.00054621 1.9429 0.0688 1.9428

Table 5. Error values for the Winslow model illustrating thtzee NSFD with the SDIRK method is second order.

Method Courtemanche Winslow
FE 3.11 48.37
NSFD w/ FE 0.20 27.37
Component-wise BE 0.16 100.05
NSFD w/ BE 0.14 58.61
NSFD w/ Implicit Midpoint 0.14 25.77
NSFD w/ SDIRK 0.15 38.98

Table 6. CPU times (in seconds) for the various methods

5 Discussion

Cellular reactions in the heart are commonly modelled bytesys of ODEs. Al-
though these models share many common goals and featue@ssttfiness proper-
ties may be very different. This dramatically affects theick of the most efficient
numerical method for their solution.

We have investigated the performance of 4 NSFD methods dsawedtandard
forward and backward Euler methods. Performance was measuterms of CPU
time required to achieve a given accuracy. In this study aMBFRrror (12) of no
greater than 5% was deemed acceptable.

Using this error criterion, all the NSFD methods perform mmdmetter than the
standard forward Euler method for the Courtemanche etrél aell model. All the



January 28, 2007 21:7 Computer Methods in Biomechanics @mdd&lical Engineering NSodes

16

NSFD methods require about 15-20 times less CPU time thafothward Euler
method. In general we find that the errors produced by the daiviEuler method
aretoo smalj i.e., larger step sizes with the method are impossibleawitinducing
instability. This is one telltale sign of stiffness. The foemances of the NSFD meth-
ods and the component-wise backward Euler method are cainpain this case,
the NSFD method with forward Euler (Rush—Larsen method) begreferable be-
cause this method can be implemented in an explicit fashion.

For the Winslow et al. ventricular cell model, the conclusi@re less straightfor-
ward. The forward Euler method is outperformed by all the BSethods except for
NSFD with backward Euler. The NSFD method using forward E(Reish—Larsen)
and the NSFD method using implicit midpoint show the bestgperance, requiring
about 2 times less CPU time than the forward Euler method. é¥ew the actual
RRMS and global errors for forward Euler are significantlyadler than all other
methods. Hence in some sense much better results can baeambtgith not much
more cost; this may be an acceptable tradeoff in some nmtilt also appears
clear from this model that the propertiesbfstability and stiff decay (shared by the
backward Euler and SDIRK method) do not appear to enhanderpamce. The
A-stability of the implicit midpoint method seems to suffice.

Although not shown explicitly, the Winslow et al. model hasna dynamic (or
transient) behaviour than the Courtemanche et al. modg);the solutions of the
ODEs have relatively more regions of rapid variation. Thinamic behaviour neces-
sitates smaller step sizes for its resolution independmther considerations. Hence
the Winslow et al. model generally requires smaller timegystéhan the Courte-
manche et al. In such cases, explicit methods generallyedoym implicit methods
because they incur less cost per step. We can see the effahts in Tables 2, 3,
and 6, where the smaller step sizes lead to smaller globaiseand less discrepancy
in CPU time between forward Euler and the rest of the methdds. importance
of higher order for the NSFD methods is also less clear in¢hise, at least when
comparing orders 1 and 2.

It is important to note that these conclusions are based pedéfi (although gen-
erally accepted) definition of what constitutes “accepadtor” for these types of
simulations. However, changes to this definition may rasulifferent conclusions.
In particular, the error in the different simulations maytbe large by other measures
of error, such as the global error (13), despite the effigiegains.

We also note that we have not contemplated integration vétiable step sizes.
Such a possibility could again change the conclusions aldgistep sizes are not
generally used for such models because in a realistic stionlaf the heart, the
cell model ODEs must be coupled to PDEs that describe theaseapic electrical
properties of the tissue. The models are often integrated)dxed step sizes in an
operator splitting formulation; hence results from a studth variable step sizes
would have limited generalizability to such situations.
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Figure 3. Comparison of computed transmembrane potewtiaiarious numerical methods; model of Winslow et



